PARTICLE-IN-CELL SIMULATIONS

- Particle-in-cell simulations are found in many applications in science and engineering
- Typically a system of equations needs to be solved:

$$\frac{d\mathbf{Y}}{dt} = \dot{\mathbf{Y}}$$

- Present applications need to solve <u>billions</u> of simultaneous, complex equations, requiring:
 - ➤ Scalability
 - Plug-and-play interface to existing code

Easy to define complex equations

PPICLF

A Parallel Particle-In-Cell Library in Fortran

• Unified, open-source framework for solving:

$$\frac{d\mathbf{Y}}{dt} = \dot{\mathbf{Y}}$$

- Proven scalability to 10^9 equations on 10^5 processors
- Plug-and-play interface to existing element-based particle-in-cell applications in Fortran and C++:
 - Cell-particle interactions
 Particle-particle interactions
- Easily define complex equations:
 - User specified <u>names</u> and <u>ordering</u> of equations Y

 \succ User specified forcing \dot{Y}

PPICLF

A Parallel Particle-In-Cell Library in Fortran

- Download: <u>https://dpzwick.github.io/ppiclF-doc/</u>
 - Documentation

> Theory

> Tutorials

Question Forum

• Applications:

Compressible Multiphase Flow

Multiphase Shock Tube (CMT-nek)

Incompressible Multiphase Flow

Other Possibilities: What will you simulate?